首页> 外文OA文献 >Machine prognostics based on health state estimation using SVM\ud
【2h】

Machine prognostics based on health state estimation using SVM\ud

机译:基于使用SVM \ ud的健康状态估计的机器预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The ability to accurately predict the remaining useful life of machine components is critical for machine continuous operation, and can also improve productivity and enhance system safety. In condition-based maintenance (CBM), maintenance is performed based on information collected through condition monitoring and an assessment of the machine health. Effective diagnostics and prognostics are important aspects of CBM for maintenance engineers to schedule a repair and to acquire replacement components before the components actually fail. All machine components are subjected to degradation processes in real environments and they have certain failure characteristics which can be related to the operating conditions. This paper describes a technique for accurate assessment of the remnant life of machines based on health state probability estimation and involving historical knowledge embedded in the closed loop diagnostics and prognostics systems. The technique uses a Support Vector Machine (SVM) classifier as a tool for estimating health state probability of machine degradation, which can affect the accuracy of prediction. To validate the feasibility of the proposed model, real life historical data from bearings of High Pressure Liquefied Natural Gas (HP-LNG) pumps were analysed and used to obtain the optimal prediction of remaining useful life. The results obtained were very encouraging and showed that the proposed prognostic system based on health state probability estimation has the potential to be used as an estimation tool for remnant life prediction in industrial machinery.\ud
机译:准确预测机器组件的剩余使用寿命的能力对于机器连续运行至关重要,并且还可以提高生产率并增强系统安全性。在基于状态的维护(CBM)中,维护是基于通过状态监视和对机器运行状况进行评估而收集的信息来执行的。有效的诊断和预测是CBM的重要方面,对于维护工程师来说,在组件实际发生故障之前安排维修并获取替换组件是至关重要的。所有机器组件都在实际环境中经受降解过程,并且它们具有某些与运行条件有关的故障特征。本文介绍了一种基于健康状态概率估计并包括闭环诊断和预测系统中嵌入的历史知识的,准确评估机器剩余寿命的技术。该技术使用支持向量机(SVM)分类器作为一种工具,用于估计机器退化的健康状态概率,这会影响预测的准确性。为了验证该模型的可行性,分析了高压液化天然气(HP-LNG)泵轴承的真实历史数据,并获得了剩余使用寿命的最佳预测。所获得的结果令人鼓舞,表明基于健康状态概率估计的预后系统有可能被用作工业机械中剩余寿命预测的估计工具。\ ud

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号